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UNIT-4 
 

Multilayer Perceptron: The Perceptron, Training a Perceptron, Learning Boolean Functions, Multilayer 
Perceptron, MLP as a Universal Approximator, Back propagation Algorithm, Training Procedures, 
Dimensionality Reduction, Learning Time. [TB-1] 
 

INTRODUCTION: - 
Artificial neural network models, one of which is the perceptron, take their inspiration from the 

brain. There are cognitive scientists and neuroscientists whose aim is to understand the functioning of 
the brain and toward this aim, build models of the natural neural networks in the brain and make 
simulation studies. 

However, in engineering, our aim is not to understand the brain perse, but to build useful 
machines. We are interested in artificial neural networks because we believe that they may help us build 
better computer systems. The brain is an information processing device that has some incredible 
abilities and surpasses current engineering products in many domains—for example, vision, speech 
recognition, and learning, to name three. These applications have evident economic utility if 
implemented on machines. 

The human brain is quite different from a computer. Whereas a computer generally has one 
processor, the brain is composed of a very large (1011) number of processing units, namely, neurons, 
operating in parallel. Though the details are not known, the processing units are believed to be much 
simpler and slower than a processor in a computer. What also makes the brain different, and is believed 
to provide its computational power, is the large connectivity. Neurons in the brain have connections, 
called synapses, to around 104 other neurons, all operating in parallel. In a computer, the processor is 
active and the memory is separate and passive, but it is believed that in the brain, both the processing 
and memory are distributed together over the network; processing is done by the neurons, and the 
memory is in the synapses between the neurons. 
 

THE PERCEPTRON: - 
The perceptron is the basic processing element. It has inputs that may come from the 

environment or may be the outputs of other perceptron. Associated with each input, xj ∈ Ʀ, j = 1,...,d, is a 
connection weight, or synaptic weight wj ∈ Ʀ, and the output, y, in the simplest case is a weighted sum of 
the inputs: 

 

 
w0 is the intercept value to make the model more general; it is generally modeled as the weight 

coming from an extra bias unit, x0, which is always +1. We can write the output of the perceptron as a 
dot product 
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During testing, with given weights, w, for input x, we compute the output y. To implement a given 

task, we need to learn the weights w, the parameters of the system, such that correct outputs are 
generated given the inputs. 

When d = 1 and x is fed from the environment through an input unit, we have 
y = wx + w0 

Which is the equation of a line with w as the slope and w0 as the intercept. Thus this perceptron 
with one input and one output can be used to implement a linear fit. With more than one input, the line 
becomes a (hyper) plane, and the perceptron with more than one input can be used to implement 
multivariate linear fit. 

The perceptron as defined in equation 11.1 defines a hyper plane and as such can be used to 
divide the input space into two: the half-space where it is positive and the half-space where it is 
negative. By using it to implement a linear discriminant function, the perceptron can separate two 
classes by checking the sign of the output. If we define s(·) as the threshold function 

 

 

 
When there are K > 2 outputs, there are K perceptron, each of which has a weight vector w i (see figure 
11.2) 

 

 
Where wij is the weight from input xj to output yi. W is the K × (d + 1) weight matrix of wij whose 

rows are the weight vectors of the K perceptron. When used for classification, during testing, we 
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In the case of a neural network, the value of each perceptron is a local function of its inputs and 
its synaptic weights. However, in classification, if we need the posterior probabilities and use the 
softmax, we also need the values of the other outputs. So, to implement this as a neural network, we can 
see this as a two-stage process, where the first stage calculates the weighted sums, and the second stage 
calculates the softmax values; but we still denote this as a single layer of output units: 

 

 
Perceptron model is also treated as one of the best and simplest types of Artificial Neural 

networks. However, it is a supervised learning algorithm of binary classifiers. Hence, we can consider it 
as a single-layer neural network with four main parameters, i.e., input values, weights and Bias, net 
sum, and an activation function. 
 
What is Binary classifier in Machine Learning? 

In Machine Learning, binary classifiers are defined as the function that helps in deciding whether 
input data can be represented as vectors of numbers and belongs to some specific class. 
Binary classifiers can be considered as linear classifiers. In simple words, we can understand it as 
a classification algorithm that can predict linear predictor function in terms of weight and feature 
vectors. 
 
Basic Components of Perceptron 

Mr. Frank Rosenblatt invented the perceptron model as a binary classifier which contains three 
main components. These are as follows: 

 
Input Nodes or Input Layer: 

This is the primary component of Perceptron which accepts the initial data into the system for 
further processing. Each input node contains a real numerical value. 
Weight and Bias: 

Weight parameter represents the strength of the connection between units. This is another most 
important parameter of Perceptron components. Weight is directly proportional to the strength of the 
associated input neuron in deciding the output. Further, Bias can be considered as the line of intercept in 
a linear equation. 
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Activation Function: 
These are the final and important components that help to determine whether the neuron will 

fire or not. Activation Function can be considered primarily as a step function. 
 
Types of Activation functions: 
 Sign function 
 Step function, and 
 Sigmoid function 

 
The data scientist uses the activation function to take a subjective decision based on various 

problem statements and forms the desired outputs. Activation function may differ (e.g., Sign, Step, and 
Sigmoid) in perceptron models by checking whether the learning process is slow or has vanishing or 
exploding gradients. 
 
Perceptron Function: - 
Perceptron function ''f(x)'' can be achieved as output by multiplying the input 'x' with the learned weight 
coefficient 'w'. 
Mathematically, we can express it as follows: 
f(x)=1; if w.x+b>0 
otherwise, f(x)=0 
'w' represents real-valued weights vector 
'b' represents the bias 
'x' represents a vector of input x values. 
 

TRAINING A PERCEPTRON: - 
The perceptron defines a hyper plane, and the neural network perceptron is just a way of 

implementing the hyper plane. Given a data sample, the weight values can be calculated offline and then 
when they are plugged in, the perceptron can be used to calculate the output values.  

In training neural networks, we generally use online learning where we are not given the whole 
sample, but we are given instances one by one and would like the network to update its parameters after 
each instance, adapting itself slowly in time. Such an approach is interesting for a number of reasons. 
1. It saves us the cost of storing the training sample in an external memory and storing the 

intermediate results during optimization. An approach like support vector machines may be quite 
costly with large samples, and in some applications, we may prefer a simpler approach where we do 
not need to store the whole sample and solve a complex optimization problem on it. 

2. The problem may be changing in time, which means that the sample distribution is not fixed, and a 
training set cannot be chosen a priori. For example, we may be implementing a speech recognition 
system that adapts itself to its user. 

3. There may be physical changes in the system. For example, in a robotic system, the components of 
the system may wear out, or sensors may degrade. 
 

Online learning: - 
In online learning, we do not write the error function over the whole sample but on individual 

instances. Starting from random initial weights, at each iteration we adjust the parameters a little bit to 
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minimize the error, without forgetting what we have previously learned. If this error function is 
differentiable, we can use gradient descent. 
For example, in regression the error on the single instance pair with index t, (xt , rt ), is 

 
And for j = 0,...,d, the online update is 

 
Where η is the learning factor, which is gradually decreased in time for convergence. This is known as 
stochastic gradient descent. 
 

Similarly, update rules can be derived for classification problems using logistic discrimination 
where updates are done after each pattern, instead of summing them and doing the update after a 
complete pass over the training set.  

 

 
and the cross-entropy is 

 
Using gradient descent, we get the following online update rule for j = 0,...,d: 

 

 

 
and the cross-entropy is 

 
Using gradient descent, we get the following online update rule, for i = 1,...,K, j = 0,...,d: 

 
The pseudocode of the algorithm is given in figure 11.3. 

 
Both equations 11.7 and 11.9 have the form 
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Let us try to get some insight into what this does. First, if the actual output is equal to the desired 
output, no update is done. When it is done, the magnitude of the update increases as the difference 
between the desired output and the actual output increases. We also see that if the actual output is less 
than the desired output, update is positive if the input is positive and negative if the input is negative. 
This has the effect of increasing the actual output and decreasing the difference. If the actual output is 
greater than the desired output, update is negative if the input is positive and positive if the input is 
negative; this decreases the actual output and makes it closer to the desired output. 

When an update is done, its magnitude depends also on the input. If the input is close to 0, its 
effect on the actual output is small and therefore its weight is also updated by a small amount. The 
greater an input, the greater the update of its weight.  

Finally, the magnitude of the update depends on the learning factor, η. If it is too large, updates 
depend too much on recent instances; it is as if the system has a very short memory. If this factor is 
small, many updates may be needed for convergence. 

 
 

LEARNING BOOLEAN FUNCTIONS: - 
In a Boolean function, the inputs are binary and the output is 1 if the corresponding function 

value is true and 0 otherwise. Therefore, it can be seen as a two-class classification problem. As an 
example, for learning to AND two inputs, the table of inputs and required outputs is given in table 11.1. 

 
An example of a perceptron that implements AND and its geometric interpretation in two 

dimensions is given in figure 11.4. 

 

 
The discriminant is 
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Though Boolean functions like AND and OR are linearly separable and are solvable using the 
perceptron, certain functions like XOR are not. The table of inputs and required outputs for XOR is given 
in table 11.2. As can be seen in figure 11.5, the problem is not linearly separable. 

 

 
Perceptron model works in two important steps as follows: 
 
Step-1: - 
In the first step first, multiply all input values with corresponding weight values and then add them to 
determine the weighted sum. Mathematically, we can calculate the weighted sum as follows: 
∑wi*xi = x1*w1 + x2*w2 +…wn*xn 
Add a special term called bias 'b' to this weighted sum to improve the model's performance. 
∑wi*xi + b 
 
Step-2: - 
In the second step, an activation function is applied with the above-mentioned weighted sum, which 
gives us output either in binary form or a continuous value as follows: 
Y = f(∑wi*xi + b) 
 
MULTILAYER PERCEPTRON: - 

A perceptron that has a single layer of weights can only approximate linear functions of the input 
and cannot solve problems like the XOR, where the discrimininant to be estimated is nonlinear. 
Similarly, a perceptron cannot be used for nonlinear regression. This limitation does not apply to 
feedforward networks with intermediate or hidden layers between the input and the output layers. If 
used for classification, such multilayer perceptron (MLP) can implement nonlinear discriminants and, if 
used for regression, can approximate nonlinear functions of the input. 
 
Architecture of MLP 
The architecture of an MLP consists of three key components:  
• The input layer,  
• Hidden layer(s), and  
• Output layer. 

 
Input Layer: The input layer receives the input data and passes it to the hidden layer(s). It consists of 
nodes, each of which corresponds to a feature in the input data. The number of nodes in the input layer 
is equal to the number of features in the input data. 
 
Hidden Layer(s): The hidden layer(s) are responsible for transforming the input data into a suitable 
representation for the output layer. They consist of nodes, which are connected to the input layer and 
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other hidden layer(s) through weights and biases. The number of hidden layer(s) and the number of 
nodes in each layer can be adjusted to optimize performance for a specific task. Common activation 
functions used in hidden layers include sigmoid, tanh, and rectified linear unit (ReLU). 
 
Output Layer: The output layer receives the transformed representation of the input data from the 
hidden layer(s) and generates the final output. It consists of nodes, each of which corresponds to a class 
or a continuous value, depending on the task. The output layer uses a specific activation function that is 
appropriate for the task, such as softmax for classification and linear for regression. 

 
Input x is fed to the input layer (including the bias), the “activation” propagates in the forward 

direction, and the values of the hidden units zh are calculated (see figure 11.6). Each hidden unit is a 
perceptron by itself and applies the nonlinear sigmoid function to its weighted sum: 

 
The output yi are perceptron in the second layer taking the hidden units as their inputs 

 
where there is also a bias unit in the hidden layer, which we denote by z0, and vi0 are the bias weights. 
The input layer of xj is not counted since no computation is done there and when there is a hidden layer, 
this is a two-layer network. 

 
As usual, in a regression problem, there is no nonlinearity in the output layer in calculating y. In a 

two-class discrimination task, there is one sigmoid output unit and when there are K > 2 classes, there 
are K outputs with softmax as the output nonlinearity. 
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Sigmoid is the continuous, differentiable version of thresholding. We need differentiability 
because the learning equations we will see are gradient-based. Another sigmoid (S-shaped) nonlinear 
basis function that can be used is the hyperbolic tangent function, tanh, which ranges from −1 to +1, 
instead of 0 to +1. In practice, there is no difference between using the sigmoid and the tanh. 
 The output is a linear combination of the nonlinear basis function values computed by the hidden 
units. It can be said that the hidden units make a nonlinear transformation from the d-dimensional input 
space to the H-dimensional space spanned by the hidden units, and, in this space, the second output 
layer implements a linear function. 
 One is not limited to having one hidden layer, and more hidden layers with their own incoming 
weights can be placed after the first hidden layer with sigmoid hidden units, thus calculating nonlinear 

functions of the first layer of hidden units and implementing more complex functions of the inputs. 
 

MLP AS A UNIVERSAL APPROXIMATOR: - 
We can represent any Boolean function as a disjunction of conjunctions, and such a Boolean expression 
can be implemented by a multilayer perceptron with one hidden layer. Each conjunction is implemented 
by one hidden unit and the disjunction by the output unit. For example, 

 
We have seen previously how to implement AND and OR using perceptron. So two perceptron can in 
parallel implement the two AND, and another perceptron on top can OR them together (see figure 11.7). 
We see that the first layer maps inputs from the (x1, x2) to the (z1, z2) space defined by the first-layer 
perceptron. Note that both inputs, (0,0) and (1,1), are mapped to (0,0) in the (z1, z2) space, allowing 
linear separability in this second space. 
Thus in the binary case, for every input combination where the output is 1, we define a hidden unit that 
checks for that particular conjunction of the input. The output layer then implements the disjunction. 
We can extend this to the case where inputs are continuous to show that similarly, any arbitrary 
function with continuous input and outputs can be approximated with a multilayer perceptron. The 
proof of universal approximation is easy with two hidden layers.  
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BACK PROPAGATION ALGORITHM: - 
Training a multilayer perceptron is the same as training a perceptron; the only difference is that now the 
output is a nonlinear function of the input thanks to the nonlinear basis function in the hidden units. 
Considering the hidden units as inputs, the second layer is a perceptron and we already know how to 
update the parameters, vij , in this case, given the inputs zh. For the first-layer weights, whj, we use the 
chain rule to calculate the gradient: 

 
It is as if the error propagates from the output y back to the inputs and hence the name back propagation 
was coined. 

 
The following are the concepts in back propagation Algorithm: 
 Nonlinear Regression 
 Two-Class Discrimination 
 Multiclass Discrimination 
 Multiple Hidden Layers 
 
Nonlinear Regression: - 
Let us first take the case of nonlinear regression (with a single output) calculated as 

 
with zh computed by equation 11.11. The error function over the whole sample in regression is 

 
The second layer is a perceptron with hidden units as the inputs, and we use the least-squares rule to 
update the second-layer weights: 

 
The first layer is also perceptron with the hidden units as the output units but in updating the first-layer 
weights, we cannot use the leastsquares rule directly as we do not have a desired output specified for 
the hidden units. This is where the chain rule comes into play. We write 
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It is also possible to have online learning, by updating the weights after each pattern, thereby 
implementing stochastic gradient descent. A complete pass over all the patterns in the training set is 
called an epoch.  We can divide the dataset of 2000 examples into batches of 500 then it will take 4 
iterations to complete 1 epoch. The learning factor, η, should be chosen smaller in this case and patterns 
should be scanned in a random order. Online learning converges faster because there may be similar 
patterns in the dataset, and the stochasticity has an effect like adding noise and may help escape local 
minima. 
It is also possible to have multiple output units, in which case a number of regression problems are 
learned at the same time. We have 

 
and the error is 

 
The batch update rules are then 
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Note that in this case, all output units share the same hidden units and thus use the same hidden 
representation, hence, we are assuming that corresponding to these different outputs, we have related 
prediction problems. An alternative is to train separate multilayer perceptron for the separate 
regression problems, each with its own separate hidden units. 
 

Two-Class Discrimination: - 
When there are two classes, one output unit suffices: 

 

 

 
The update equations implementing gradient descent are 

 
As in the simple perceptron, the update equations for regression and classification are identical (which 
does not mean that the values are). 
 
Multiclass Discrimination: - 
In a (K > 2)-class classification problem, there are K outputs 

 
and we use softmax to indicate the dependency between classes; namely, they are mutually exclusive 
and exhaustive: 
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and we get the update equations using gradient descent: 

 
Multiple Hidden Layers: - 
It is possible to have multiple hidden layers each with its own weights and applying the sigmoid function 
to its weighted sum. For regression, let us say, if we have a multilayer perceptron with two hidden 
layers, we write 

 
where w1h and w2l are the first- and second-layer weights, z1h and z2h are the units on the first and 
second hidden layers, and v are the thirdlayer weights. Training such a network is similar except that to 
train the first-layer weights, we need to back propagate one more layer. 
 
TRAINING PROCEDURES: - 
A gradient measures how much the output of a function changes if you change the inputs a little bit."  A 
gradient simply measures the change in all weights with regard to the change in error. You can also 
think of a gradient as the slope of a function. The higher the gradient, the steeper the slope and the faster 
a model can learn. But if the slope is zero, the model stops learning.   
 Improving Convergence 
 Overtraining 
 Structuring the Network 
 Hints 

 
Improving Convergence: - 
Gradient descent has various advantages. It is simple. It is local; namely, the change in a weight uses only 
the values of the presynaptic and postsynaptic units and the error (suitably back propagated). When 
online training is used, it does not need to store the training set and can adapt as the task to be learned 
changes. Because of these reasons, it can be (and is) implemented in hardware. But by itself, gradient 
descent converges slowly. When learning time is important, one can use more sophisticated 
optimization methods. However, there are two frequently used simple techniques that improve the 
performance of the gradient descent considerably, making gradient-based methods feasible in real 
applications. 
 



PVP Siddhartha Institute of Technology, Department of IT                                                           Page 14 of 21 
 

 Momentum: - 
Momentum is a technique to prevent sensitive movement. When the gradient gets computed every 
iteration, it can have totally different direction and the steps make a zigzag path, which makes 
training very slow. 

 
The idea is to take a running average by incorporating the previous update in the current change as if 
there is a momentum due to previous updates.  

 

 
 

 Adaptive Learning Rate: - 
In gradient descent, the learning factor η determines the magnitude of change to be made in the 
parameter. It is generally taken between 0.0 and 1.0, mostly less than or equal to 0.2. It can be made 
adaptive for faster convergence, where it is kept large when learning takes place and is decreased 
when learning slows down: 

 
Thus we increase η by a constant amount if the error on the training set decreases and decrease it 
geometrically if it increases. Because E may oscillate from one epoch to another, it is a better idea to 
take the average of the past few epochs as Et. 

 
Overtraining: - 

 
In an application, d and K are predefined and H is the parameter that we play with to tune the 

complexity of the model. We know from previous chapters that an over complex model memorizes the 
noise in the training set and does not generalize to the validation set. For example, we have previously 
seen this phenomenon in the case of polynomial regression where we noticed that in the presence of 
noise or small samples, increasing the polynomial order leads to worse generalization. 
 Remember that initially all the weights are close to 0 and thus have little effect. As training 
continues, the most important weights start moving away from 0 and are utilized. But if training is 
continued further on to get less and less error on the training set, almost all weights are updated away 
from 0 and effectively become parameters. Thus as training continues, it is as if new parameters are 
added to the system, increasing the complexity and leading to poor generalization. Learning should be 
stopped early to alleviate this problem of overtraining. The optimal point to stop training, and the 

https://i.stack.imgur.com/epW89.jpg
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optimal number of hidden units, is determined through cross-validation, which involves testing the 
network’s performance on validation data unseen during training. 
  
Structuring the Network: - 
 In some applications, we may believe that the input has a local structure. For example, in vision we 
know that nearby pixels are correlated and there are local features like edges and corners; any object, 
for example, a handwritten digit, may be defined as a combination of such primitives. Similarly, in 
speech, locality is in time and inputs close in time can be grouped as speech primitives. By combining 
these primitives, longer utterances, for example, speech phonemes may be defined. In such a case when 
designing the MLP, hidden units are not connected to all input units because not all inputs are 
correlated. Instead, we define hidden units that define a window over the input space and are connected 
to only a small local subset of the inputs. This decreases the number of connections and therefore the 
number of free parameters. 
 We can repeat this in successive layers where each layer is connected to a small number of local 
units below and checks for a more complicated feature by combining the features below in a larger part 
of the input space until we get to the output layer (see figure 11.14). For example, the input may be 
pixels. By looking at pixels, the first hidden layer units may learn to check for edges of various 
orientations. Then by combining edges, the second hidden layer units can learn to check for 
combinations of edges—for example, arcs, corners, line ends—and then combining them in upper layers, 
the units can look for semi-circles, rectangles, or in the case of a face recognition application, eyes, 
mouth, so forth. This is the example of a hierarchical cone where features get more complex, abstract, 
and fewer in numbers as we go up the network until we get to classes. 

 
 In such a case, we can further reduce the number of parameters by weight sharing. Taking the 
example of visual recognition again, we can see that when we look for features like oriented edges, they 
may be present in different parts of the input space. So instead of defining independent hidden units 
learning different features in different parts of the input space, we can have copies of the same hidden 
units looking at different parts of the input space (see figure 11.15). During learning, we calculate the 
gradients by taking different inputs, and then we average these up and make a single update. This 
implies a single parameter that defines the weight on multiple connections. Also, because the update on 
a weight is based on gradients for several inputs, it is as if the training set is effectively multiplied. 
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Hints: - 
 The knowledge of local structure allows us to prestructure the multilayer network, and with weight 
sharing it has fewer parameters. The alternative of an MLP with completely connected layers has no 
such structure and is more difficult to train. Knowledge of any sort related to the application should be 
built into the network structure whenever possible. These are called hints and are the properties of the 
target function that are known to us independent of the training examples. 
In image recognition, there are invariance hints: the identity of an object does not change when it is 
rotated, translated, or scaled. Hints are auxiliary information that can be used to guide the learning 
process and are especially useful when the training set is limited.  

 
There are different ways in which hints can be used: 
Virtual examples: 
1. Hints can be used to create virtual examples. For example, knowing that the object is invariant to 

scale, from a given training example, we can generate multiple copies at different scales and add 
them to the training set with the same label. This has the advantage that we increase the training set 
and do not need to modify the learner in any way. The problem may be that too many examples may 
be needed for the learner to learn the invariance. 

2. Hints can be used to create virtual examples. For example, knowing that the object is invariant to 
scale, from a given training example, we can generate multiple copies at different scales and add 
them to the training set with the same label. This has the advantage that we increase the training set 
and do not need to modify the learner in any way. The problem may be that too many examples may 
be needed for the learner to learn the invariance. 

3. The hint may be incorporated into the network structure. Local structure and weight sharing, is one 
example where we get invariance to small translations and rotations. 

4.  

 

 
and add it as an extra term to the usual error function: 

 
 
DIMENSIONALITY REDUCTION: - 

In a multilayer perceptron, if the number of hidden units is less than the number of inputs, the 
first layer performs a dimensionality reduction. The form of this reduction and the new space spanned 
by the hidden units depend on what the MLP is trained for. If the MLP is for classification with output 
units following the hidden layer, then the new space is defined and the mapping is learned to minimize 
classification error. 

We can get an idea of what the MLP is doing by analyzing the weights. We know that the dot 
product is maximum when the two vectors are identical. So we can think of each hidden unit as defining 
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a template in its incoming weights, and by analyzing these templates, we can extract knowledge from a 
trained MLP. If the inputs are normalized, weights tell us of their relative importance. Such analysis is 
not easy but gives us some insight as to what the MLP is doing and allows us to peek into the black box. 
 
Auto associator: - 
 An interesting architecture is the auto associator, which is an MLP architecture where there are as 
many outputs as there are inputs, and the required outputs are defined to be equal to the inputs (see 
figure 11.19). To be able to reproduce the inputs again at the output layer, the MLP is forced to find the 
best representation of the inputs in the hidden layer. When the number of hidden units is less than the 
number of inputs, this implies dimensionality reduction. Once the training is done, the first layer from 
the input to the hidden layer acts as an encoder, and the values of the hidden units make up the encoded 
representation. The second layer from the hidden units to the output units acts as a decoder, 
reconstructing the original signal from its encoded representation. 

 

 
 It has been shown that an MLP with one hidden layer of units implements principal components 
analysis, except that the hidden unit weights are not the eigenvectors sorted in importance using the 
eigenvalues but span the same space as the H principal eigenvectors. If the encoder and decoder are not 
one layer but multilayer perceptron with sigmoid nonlinearity in the hidden units, the encoder 
implements nonlinear dimensionality reduction. 
 
Sammon mapping: - 
 Another way to use an MLP for dimensionality reduction is through multidimensional scaling, show 
how an MLP can be used to learn the Sammon mapping.  
Sammon stress is defined as 
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LEARNING TIME: - 
 Until now, we have been concerned with cases where the input is fed once, all together. In some 
applications, the input is temporal where we need to learn a temporal sequence. In others, the output 
may also change in time. Examples are as follows: 
 Sequence recognition: - This is the assignment of a given sequence to one of several classes. Speech 

recognition is one example where the input signal sequence is the spoken speech and the output is 
the code of the word spoken. That is, the input changes in time but the output does not. 

 Sequence reproduction: - Here, after seeing part of a given sequence, the system should predict the 
rest. Time-series prediction is one example where the input is given but the output changes. 

 Temporal association: - This is the most general case where a particular output sequence is given 
as output after a specific input sequence. The input and output sequences may be different. Here 
both the input and the output change in time. 
 

Time Delay Neural Networks: - 
 The easiest way to recognize a temporal sequence is by converting it to a spatial sequence. Then 
any method discussed up to this point can be utilized for classification. In a time delay neural network 
previous inputs are delayed in time so as to synchronize with the final input, and all are fed together as 
input to the system.  

 
 Back propagation can then be used to train the weights. To extract features local in time, one can 
have layers of structured connections and weight sharing to get translation invariance in time. The main 
restriction of this architecture is that the size of the time window we slide over the sequence should be 
fixed a priori. 
 
Recurrent Networks: - 
In a recurrent network, additional to the feed forward connections, units have self-connections or 
connections to units in the previous layers. This recurrency acts as a short-term memory and lets the 
network remember what happened in the past. 
Most frequently, one uses a partially recurrent network where a limited number of recurrent 
connections are added to a multilayer perceptron (see figure 11.21). This combines the advantage of the 
nonlinear approximation ability of a multilayer perceptron with the temporal representation ability of 
the recurrency, and such a network can be used to implement any of the three temporal association 
tasks. It is also possible to have hidden units in the recurrent backward connections, these being known 
as context units. No formal results are known to determine how to choose the best architecture given a 
particular application. 
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Unfolding in time: - 
If the sequences have a small maximum length, then unfolding in time can be used to convert an 
arbitrary recurrent network to an equivalent feed forward network (see figure 11.22). A separate unit 
and connection is created for copies at different times. The resulting network can be trained with back 
propagation with the additional requirement that all copies of each connection should remain identical. 
The solution, as in weight sharing, is to sum up the different weight changes in time and change the 
weight by the average. This is called back propagation through time. The problem with this approach is 
the memory requirement if the length of the sequence is large Real time recurrent learning is an 
algorithm for training recurrent networks without unfolding and has the advantage that it can use 
sequences of arbitrary length. 

 

 
 
UNIT WISE IMPORTANT QUESTIONS: - 
1. What is a Perceptron? Explain the working of a perceptron with a neat diagram. 
2. Explain Perceptron training Algorithm 
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3. How Multilayer Perceptron can implement nonlinear discriminants explain.in detail. 
4. Illustrate why MLP as a Universal Approximator 
5. Make use of Back propagation Algorithm for training a multi- layer perceptron 
6. Compare Two- class Discrimination and Multi-class Discrimination 
7. Outline the concept of Training Procedures 
8. List and explain the methods for Reducing Dimensionality. 
9. Compare Feature Extraction and Feature Selection techniques. Explain how dimensionality can be 

reduced using subset selection procedure with an example. 
10. What is the significance of Learning Time and Explain Recurrent Neural Networks. 
11. Show the perceptron that calculates AND of its two inputs. 
12. Show the perceptron that calculates OR of its two inputs. 
13. Show the perceptron that calculates NOT of its input. 
14. Show the perceptron that calculates NAND of its two inputs. 
15. Show the perceptron that calculates NOR of its two inputs. 
16. Show the perceptron that calculates XOR of its two inputs. 
17. Show the perceptron that calculates the parity of its three inputs. 
18.  

 
SOLUTION: - 
The case of nonlinear regression (with a single output) calculated as 

 
with zh computed by equation 11.11. The error function over the whole sample in regression is 

 
The second layer is a perceptron with hidden units as the inputs, and we use the least-squares rule 
to update the second-layer weights: 

 
The first layer is also perceptron with the hidden units as the output units but in updating the first-
layer weights, we cannot use the leastsquares rule directly as we do not have a desired output 
specified for the hidden units. This is where the chain rule comes into play. We write 
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19. Derive the update equations for an MLP with two hidden layers. 

 
Let us take the case of regression: 

 
We just continue back propagating, that is continue the chain rule, and we can write error on a 
layer as a function of the error in the layer after, carrying the supervised error in the output layer 
to layers before: 

 
20. Parity is cyclic shift invariant, for example, “0101” and “1010” have the same parity. Propose a 

multilayer perceptron to learn the parity function using this hint. 
One can generate virtual examples by adding shifted versions of instances to the training set. Or, 
one can define local hidden units with weight sharing to keep track of local parity which are then 
combined to calculate the overall parity. 
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